Sequential hypothesis testing with spatially correlated presence-absence data.
نویسندگان
چکیده
A pest management decision to initiate a control treatment depends upon an accurate estimate of mean pest density. Presence-absence sampling plans significantly reduce sampling efforts to make treatment decisions by using the proportion of infested leaves to estimate mean pest density in lieu of counting individual pests. The use of sequential hypothesis testing procedures can significantly reduce the number of samples required to make a treatment decision. Here we construct a mean-proportion relationship for Oligonychus perseae Tuttle, Baker, and Abatiello, a mite pest of avocados, from empirical data, and develop a sequential presence-absence sampling plan using Bartlett's sequential test procedure. Bartlett's test can accommodate pest population models that contain nuisance parameters that are not of primary interest. However, it requires that population measurements be independent, which may not be realistic because of spatial correlation of pest densities across trees within an orchard. We propose to mitigate the effect of spatial correlation in a sequential sampling procedure by using a tree-selection rule (i.e., maximin) that sequentially selects each newly sampled tree to be maximally spaced from all other previously sampled trees. Our proposed presence-absence sampling methodology applies Bartlett's test to a hypothesis test developed using an empirical mean-proportion relationship coupled with a spatial, statistical model of pest populations, with spatial correlation mitigated via the aforementioned tree-selection rule. We demonstrate the effectiveness of our proposed methodology over a range of parameter estimates appropriate for densities of O. perseae that would be observed in avocado orchards in California.
منابع مشابه
Sequential Hypothesis Testing with Spatially Correlated Count Data
It is well known that sequential hypothesis test procedures can have appreciable cost savings compared to fixed sample size test plans. The first sequential hypothesis procedure was developed by Wald for one-parameter families of distributions and later extended by Bartlett to handle the case of nuisance parameters. However, Bartlett’s procedure requires independent and identically distributed ...
متن کاملIssues and Challenges of Incorporating Fuzzy Sets in Ecological Modeling
An information-based framework is presented for spatially explicit GIS-based ecological modeling. Within this framework some of the important issues and challenges of incorporating fuzzy sets in spatially explicit population models (SEPM) are discussed. Examples of current work are used to illustrate the main issues and challenges facing the incorporation of fuzzy sets in ecological modeling. A...
متن کاملTesting for Stochastic Non- Linearity in the Rational Expectations Permanent Income Hypothesis
The Rational Expectations Permanent Income Hypothesis implies that consumption follows a martingale. However, most empirical tests have rejected the hypothesis. Those empirical tests are based on linear models. If the data generating process is non-linear, conventional tests may not assess some of the randomness properly. As a result, inference based on conventional tests of linear models can b...
متن کاملTESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE
This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...
متن کاملAssessment of uncertainty for coal quality-tonnage curves through minimum spatial cross-correlation simulation
Coal quality-tonnage curves are helpful tools in optimum mine planning and can be estimated using geostatistical simulation methods. In the presence of spatially cross-correlated variables, traditional co-simulation methods are impractical and time consuming. This paper investigates a factor simulation approach based on minimization of spatial cross-correlations with the objective of modeling s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of economic entomology
دوره 105 3 شماره
صفحات -
تاریخ انتشار 2012